Normal view MARC view ISBD view

Vector calculus / Jerrold E. Marsden, Anthony J. Tromba

Main Author Marsden, Jerrold E. Coauthor Tromba, Anthony J. Country Estados Unidos. Edition 3rd ed Publication New York : W.H. Freeman, cop. 1988 Description XIV, 655 p. : il., gráficos ; 25 cm ISBN 0-7167-1856-1 CDU 517.1
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Holdings
Item type Current location Call number Status Date due Barcode Item holds Course reserves
Monografia Biblioteca Geral da Universidade do Minho
BGUM 517.1 - M Available 119251

Licenciatura em Matemática Análise II 2º semestre

Licenciatura em Matemática Análise I 1º semestre

Mestrado Integrado Engenharia Biológica Análise Matemática EE 2º semestre

Total holds: 0

Table of contents provided by Syndetics

  • 1 The Geometry of Euclidean Space
  • 1.1 Vectors in Two- and Three-Dimensional Space
  • 1.3 Matrices, Determinants, and the Cross Product
  • 1.4 Cylindrical and Spherical Coordinates
  • 2 Differentiation Space
  • 2.1 The Geometry of Real-Valued Functions
  • 2.2 Limits and Continuity
  • 2.3 Differentiation
  • 2.6 Gradients and Directional Derivatives
  • 3.1 Iterated Partial Derivatives
  • 3.3 Extrema of Real-Valued Functions
  • 3.4 Constrained Extrema and Lagrange Multipliers
  • 6.3 Applications of Double and Triple
  • 1.2 The Inner Product, Length, and Distance
  • 3.2 Taylor's Theorem
  • 1.5 n-Dimensional Euclidean Space
  • 3 Higher-Order Derivatives: Maxima and Minima
  • 2.4 Introduction to Paths
  • 3.5 The Implicit Function Theorem
  • 2.5 Properties of the Derivative
  • 4 Vector-Valued Functions
  • 4.1 Acceleration and Newton's Second Law
  • 4.4 Divergence and Curl
  • 5 Double and Triple Integrals
  • 4.2 Arc Length
  • 4.3 Vector Fields
  • 5.5 The Triple Integral
  • 5.1 Introduction
  • 5.2 The Double Integral Over a Rectangle
  • 5.3 The Double Integral Over More General Regions
  • 6.1 The Geometry of Maps from R2 to R2
  • 6.2 The Change of Variables Theorem
  • 5.4 Changing the Order of Integration
  • 6 The Change of Variables Formula and Applications of Integration
  • 6.4 Improper Integrals
  • 7.1 The Path Integral
  • 7.2 Line Integrals
  • 7.3 Parametrized Surfaces
  • 7.4 Area of a Surface
  • 7.5 Integrals of Scalar Functions Over Surfaces
  • 7.6 Surface Integrals of Vector Functions
  • 8 The Integral Theorems of Vector Analysis
  • 8.1 Green's Theorem
  • 8.2 Stokes' Theorem
  • 8.3 Conservative Fields
  • 8.4 Gauss' Theorem
  • 8.5 Applications to Physics, Engineering, and Differential Equations
  • 8.6 Differential Forms
  • 7 Integrals
  • 7.7 Applications to Differential Geometry, Physics and Forms of Life

There are no comments for this item.

Log in to your account to post a comment.