Normal view MARC view ISBD view

Introduction to nanotechnology / Charles P. Poole, Jr., Frank J. Owens

Main Author Poole Junior, Charles P. Coauthor Owens, Frank J. Country Estados Unidos. Publication Hoboken : Wiley-Interscience, cop. 2003 Description XII, 388 p. : il. ; 24 cm ISBN 0-471-07935-9 CDU 620.1
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Holdings
Item type Current location Call number Status Date due Barcode Item holds Course reserves
Monografia Biblioteca da UMinho no Campus de Azurém
BPG 620.1 - P Available 386111

Mestrado Integrado em Engenharia de Materiais Materiais Nanoestruturados 1º semestre

Total holds: 0

Enhanced descriptions from Syndetics:

This self-confessed introduction provides technical administrators and managers with a broad, practical overview of the subject and gives researchers working in different areas an appreciation of developments in nanotechnology outside their own fields of expertise.

Table of contents provided by Syndetics

  • Preface (p. xi)
  • 1 Introduction (p. 1)
  • 2 Introduction to Physics of the Solid State (p. 8)
  • 2.1 Structure (p. 8)
  • 2.1.1 Size Dependence of Properties (p. 8)
  • 2.1.2 Crystal Structures (p. 9)
  • 2.1.3 Face-Centered Cubic Nanoparticles (p. 12)
  • 2.1.4 Tetrahedrally Bonded Semiconductor Structures (p. 15)
  • 2.1.5 Lattice Vibrations (p. 18)
  • 2.2 Energy Bands (p. 20)
  • 2.2.1 Insulators, Semiconductors, and Conductors (p. 20)
  • 2.2.2 Reciprocal Space (p. 22)
  • 2.2.3 Energy Bonds and Gaps of Semiconductors (p. 23)
  • 2.2.4 Effective Masses (p. 28)
  • 2.2.5 Fermi Surfaces (p. 29)
  • 2.3 Localized Particles (p. 30)
  • 2.3.1 Donors, Acceptors, and Deep Traps (p. 30)
  • 2.3.2 Mobility (p. 31)
  • 2.3.3 Excitons (p. 32)
  • 3 Methods of Measuring Properties (p. 35)
  • 3.1 Introduction (p. 35)
  • 3.2 Structure (p. 36)
  • 3.2.1 Atomic Structures (p. 36)
  • 3.2.2 Crystallography (p. 37)
  • 3.2.3 Particle Size Determination (p. 42)
  • 3.2.4 Surface Structure (p. 45)
  • 3.3 Microscopy (p. 46)
  • 3.3.1 Transmission Electron Microscopy (p. 46)
  • 3.3.2 Field Ion Microscopy (p. 51)
  • 3.3.3 Scanning Microscopy (p. 51)
  • 3.4 Spectroscopy (p. 58)
  • 3.4.1 Infrared and Raman Spectroscopy (p. 58)
  • 3.4.2 Photoemission and X-Ray Spectroscopy (p. 62)
  • 3.4.3 Magnetic Resonance (p. 68)
  • 4 Properties of Individual Nanoparticles (p. 72)
  • 4.1 Introduction (p. 72)
  • 4.2 Metal Nanoclusters (p. 74)
  • 4.2.1 Magic Numbers (p. 74)
  • 4.2.2 Theoretical Modeling of Nanoparticles (p. 75)
  • 4.2.3 Geometric Structure (p. 78)
  • 4.2.4 Electronic Structure (p. 81)
  • 4.2.5 Reactivity (p. 83)
  • 4.2.6 Fluctuations (p. 86)
  • 4.2.7 Magnetic Clusters (p. 86)
  • 4.2.8 Bulk to Nanotransition (p. 88)
  • 4.3 Semiconducting Nanoparticles (p. 90)
  • 4.3.1 Optical Properties (p. 90)
  • 4.3.2 Photofragmentation (p. 92)
  • 4.3.3 Coulombic Explosion (p. 93)
  • 4.4 Rare Gas and Molecular Clusters (p. 94)
  • 4.4.1 Inert-Gas Clusters (p. 94)
  • 4.4.2 Superfluid Clusters (p. 95)
  • 4.4.3 Molecular Clusters (p. 96)
  • 4.5 Methods of Synthesis (p. 97)
  • 4.5.1 RF Plasma (p. 97)
  • 4.5.2 Chemical Methods (p. 98)
  • 4.5.3 Thermolysis (p. 99)
  • 4.5.4 Pulsed Laser Methods (p. 100)
  • 4.6 Conclusion (p. 101)
  • 5 Carbon Nanostructures (p. 103)
  • 5.1 Introduction (p. 103)
  • 5.2 Carbon Molecules (p. 103)
  • 5.2.1 Nature of the Carbon Bond (p. 103)
  • 5.2.2 New Carbon Structures (p. 105)
  • 5.3 Carbon Clusters (p. 106)
  • 5.3.1 Small Carbon Clusters (p. 106)
  • 5.3.2 Discovery of C[subscript 60] (p. 107)
  • 5.3.3 Structure of C[subscript 60] and Its Crystal (p. 110)
  • 5.3.4 Alkali-Doped C[subscript 60] (p. 110)
  • 5.3.5 Superconductivity in C[subscript 60] (p. 112)
  • 5.3.6 Larger and Smaller Fullerenes (p. 113)
  • 5.3.7 Other Buckyballs (p. 113)
  • 5.4 Carbon Nanotubes (p. 114)
  • 5.4.1 Fabrication (p. 114)
  • 5.4.2 Structure (p. 117)
  • 5.4.3 Electrical Properties (p. 118)
  • 5.4.4 Vibrational Properties (p. 122)
  • 5.4.5 Mechanical Properties (p. 123)
  • 5.5 Applications of Carbon Nanotubes (p. 125)
  • 5.5.1 Field Emission and Shielding (p. 125)
  • 5.5.2 Computers (p. 126)
  • 5.5.3 Fuel Cells (p. 127)
  • 5.5.4 Chemical Sensors (p. 128)
  • 5.5.5 Catalysis (p. 129)
  • 5.5.6 Mechanical Reinforcement (p. 130)
  • 6 Bulk Nanostructured Materials (p. 133)
  • 6.1 Solid Disordered Nanostructures (p. 133)
  • 6.1.1 Methods of Synthesis (p. 133)
  • 6.1.2 Failure Mechanisms of Conventional Grain-Sized Materials (p. 137)
  • 6.1.3 Mechanical Properties (p. 139)
  • 6.1.4 Nanostructured Multilayers (p. 141)
  • 6.1.5 Electrical Properties (p. 142)
  • 6.1.6 Other Properties (p. 147)
  • 6.1.7 Metal Nanocluster Composite Glasses (p. 148)
  • 6.1.8 Porous Silicon (p. 150)
  • 6.2 Nanostructured Crystals (p. 153)
  • 6.2.1 Natural Nanocrystals (p. 153)
  • 6.2.2 Computational Prediction of Cluster Lattices (p. 153)
  • 6.2.3 Arrays of Nanoparticles in Zeolites (p. 154)
  • 6.2.4 Crystals of Metal Nanoparticles (p. 157)
  • 6.2.5 Nanoparticle Lattices in Colloidal Suspensions (p. 158)
  • 6.2.6 Photonic Crystals (p. 159)
  • 7 Nanostructured Ferromagnetism (p. 165)
  • 7.1 Basics of Ferromagnetism (p. 165)
  • 7.2 Effect of Bulk Nanostructuring of Magnetic Properties (p. 170)
  • 7.3 Dynamics of Nanomagnets (p. 172)
  • 7.4 Nanopore Containment of Magnetic Particles (p. 176)
  • 7.5 Nanocarbon Ferromagnets (p. 177)
  • 7.6 Giant and Colossal Magnetoresistance (p. 181)
  • 7.7 Ferrofluids (p. 186)
  • 8 Optical and Vibrational Spectroscopy (p. 194)
  • 8.1 Introduction (p. 194)
  • 8.2 Infrared Frequency Range (p. 196)
  • 8.2.1 Spectroscopy of Semiconductors; Excitons (p. 196)
  • 8.2.2 Infrared Surface Spectroscopy (p. 198)
  • 8.2.3 Raman Spectroscopy (p. 203)
  • 8.2.4 Brillouin Spectroscopy (p. 210)
  • 8.3 Luminescence (p. 213)
  • 8.3.1 Photoluminescence (p. 213)
  • 8.3.2 Surface States (p. 215)
  • 8.3.3 Thermoluminescence (p. 221)
  • 8.4 Nanostructures in Zeolite Cages (p. 222)
  • 9 Quantum Wells, Wires, and Dots (p. 226)
  • 9.1 Introduction (p. 226)
  • 9.2 Preparation of Quantum Nanostructures (p. 227)
  • 9.3 Size and Dimensionality Effects (p. 231)
  • 9.3.1 Size Effects (p. 231)
  • 9.3.2 Conduction Electrons and Dimensionality (p. 233)
  • 9.3.3 Fermi Gas and Density of States (p. 234)
  • 9.3.4 Potential Wells (p. 236)
  • 9.3.5 Partial Confinement (p. 241)
  • 9.3.6 Properties Dependent on Density of States (p. 242)
  • 9.4 Excitons (p. 244)
  • 9.5 Single-Electron Tunneling (p. 245)
  • 9.6 Applications (p. 248)
  • 9.6.1 Infrared Detectors (p. 248)
  • 9.6.2 Quantum Dot Lasers (p. 251)
  • 9.7 Superconductivity (p. 253)
  • 10 Self-Assembly and Catalysis (p. 257)
  • 10.1 Self-Assembly (p. 257)
  • 10.1.1 Process of Self-Assembly (p. 257)
  • 10.1.2 Semiconductor Islands (p. 258)
  • 10.1.3 Monolayers (p. 260)
  • 10.2 Catalysis (p. 264)
  • 10.2.1 Nature of Catalysis (p. 264)
  • 10.2.2 Surface Area of Nanoparticles (p. 264)
  • 10.2.3 Porous Materials (p. 268)
  • 10.2.4 Pillared Clays (p. 273)
  • 10.2.5 Colloids (p. 277)
  • 11 Organic Compounds and Polymers (p. 281)
  • 11.1 Introduction (p. 281)
  • 11.2 Forming and Characterizing Polymers (p. 283)
  • 11.2.1 Polymerization (p. 283)
  • 11.2.2 Sizes of Polymers (p. 284)
  • 11.3 Nanocrystals (p. 285)
  • 11.3.1 Condensed Ring Types (p. 285)
  • 11.3.2 Polydiacetylene Types (p. 289)
  • 11.4 Polymers (p. 292)
  • 11.4.1 Conductive Polymers (p. 292)
  • 11.4.2 Block Copolymers (p. 293)
  • 11.5 Supramolecular Structures (p. 295)
  • 11.5.1 Transition-Metal-Mediated Types (p. 295)
  • 11.5.2 Dendritic Molecules (p. 296)
  • 11.5.3 Supramolecular Dendrimers (p. 302)
  • 11.5.4 Micelles (p. 305)
  • 12 Biological Materials (p. 310)
  • 12.1 Introduction (p. 310)
  • 12.2 Biological Building Blocks (p. 311)
  • 12.2.1 Sizes of Building Blocks and Nanostructures (p. 311)
  • 12.2.2 Polypeptide Nanowire and Protein Nanoparticle (p. 314)
  • 12.3 Nucleic Acids (p. 316)
  • 12.3.1 DNA Double Nanowire (p. 316)
  • 12.3.2 Genetic Code and Protein Synthesis (p. 322)
  • 12.4 Biological Nanostructures (p. 324)
  • 12.4.1 Examples of Proteins (p. 324)
  • 12.4.2 Micelles and Vesicles (p. 326)
  • 12.4.3 Multilayer Films (p. 329)
  • 13 Nanomachines and Nanodevices (p. 332)
  • 13.1 Microelectromechanical Systems (MEMSs) (p. 332)
  • 13.2 Nanoelectromechanical Systems (NEMSs) (p. 335)
  • 13.2.1 Fabrication (p. 335)
  • 13.2.2 Nanodevices and Nanomachines (p. 339)
  • 13.3 Molecular and Supramolecular Switches (p. 345)
  • A Formulas for Dimensionality (p. 357)
  • A.1 Introduction (p. 357)
  • A.2 Delocalization (p. 357)
  • A.3 Partial Confinement (p. 358)
  • B Tabulations of Semiconducting Material Properties (p. 361)
  • Index (p. 371)

Author notes provided by Syndetics

Charles P. Poole Jr., PhD, a professor emeritus in the Department of Physics and Astronomy at the University of South Carolina is a member of the USC nanotechnology center
Frank J. Owens, PhD, is a senior research scientist of the U.S. Army's Armament Research, Development, and Engineering Center, and a professor of physics in the graduate school of Hunter College of the City University of New York

There are no comments for this item.

Log in to your account to post a comment.