Normal view MARC view ISBD view

Hydrodynamics and water quality : modeling rivers, lakes, and estuaries / Zhen-Gang Ji

Main Author Ji, Zhen-Gang Country Estados Unidos. Publication Hoboken : John Wiley & Sons, cop. 2008 Description XXII, 676 p. : il. ; 24 cm + 1 CD-ROM ISBN 978-0-470-13543-3 CDU 627
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Holdings
Item type Current location Call number Status Date due Barcode Item holds Course reserves
Monografia Biblioteca da UMinho no Campus de Azurém
BPG 627 - J Available 382153

Mestrado em Engenharia Civil Gestão Integrada de Recursos Hídricos 1º semestre

Produtos Computador Biblioteca da UMinho no Campus de Azurém
BREG9 627 - J Available 382577
Monografia Biblioteca Geral da Universidade do Minho
BGUM 627 - J Available 396553
Produtos Computador Biblioteca Geral da Universidade do Minho
BGUM 627 - J Available 396554
Total holds: 0

Enhanced descriptions from Syndetics:

This reference gets you up to speed on mathematical modeling for environmental and water resources management. With a practical, application-oriented approach, it discusses hydrodynamics, sediment processes, toxic fate and transport, and water quality and eutrophication in rivers, lakes, estuaries, and coastal waters. A companion CD-ROM includes a modeling package and electronic files of numerical models, case studies, and model results. This is a core reference for water quality professionals and an excellent text for graduate students.

Table of contents provided by Syndetics

  • Foreword (p. xiii)
  • Preface (p. xv)
  • Acknowledgments (p. xvii)
  • 1 Introduction (p. 1)
  • 1.1 Overview (p. 1)
  • 1.2 Understanding Surface Waters (p. 4)
  • 1.3 Modeling of Surface Waters (p. 7)
  • 1.4 About This Book (p. 11)
  • 2 Hydrodynamics (p. 13)
  • 2.1 Hydrodynamic Processes (p. 14)
  • 2.1.1 Water Density (p. 14)
  • 2.1.2 Conservation Laws (p. 16)
  • 2.1.3 Advection and Dispersion (p. 20)
  • 2.1.4 Mass Balance Equation (p. 25)
  • 2.1.5 Atmospheric Forcings (p. 27)
  • 2.1.6 Coriolis Force and Geostrophic Flow (p. 32)
  • 2.2 Governing Equations (p. 35)
  • 2.2.1 Basic Approximations (p. 35)
  • 2.2.2 Equations in Cartesian Coordinates (p. 38)
  • 2.2.3 Vertical Mixing and Turbulence Models (p. 48)
  • 2.2.4 Equations in Curvilinear Coordinates (p. 52)
  • 2.2.5 Initial Conditions and Boundary Conditions (p. 58)
  • 2.3 Temperature (p. 62)
  • 2.3.1 Heatflux Components (p. 65)
  • 2.3.2 Temperature Formulations (p. 73)
  • 2.4 Hydrodynamic Modeling (p. 77)
  • 2.4.1 Hydrodynamic Parameters and Data Requirements (p. 78)
  • 2.4.2 Case Study I: Lake Okeechobee (p. 82)
  • 2.4.3 Case Study II: St. Lucie Estuary and Indian River Lagoon (p. 98)
  • 3 Sediment Transport (p. 113)
  • 3.1 Overview (p. 113)
  • 3.1.1 Properties of Sediment (p. 114)
  • 3.1.2 Problems Associated with Sediment (p. 117)
  • 3.2 Sediment Processes (p. 119)
  • 3.2.1 Particle Settling (p. 120)
  • 3.2.2 Horizontal Transport of Sediment (p. 122)
  • 3.2.3 Resuspension and Deposition (p. 126)
  • 3.2.4 Equations for Sediment Transport (p. 128)
  • 3.2.5 Turbidity and Secchi Depth (p. 130)
  • 3.3 Cohesive Sediment (p. 134)
  • 3.3.1 Vertical Profiles of Cohesive Sediment Concentrations (p. 136)
  • 3.3.2 Flocculation (p. 138)
  • 3.3.3 Settling of Cohesive Sediment (p. 139)
  • 3.3.4 Deposition of Cohesive Sediment (p. 143)
  • 3.3.5 Resuspension of Cohesive Sediment (p. 145)
  • 3.4 Noncohesive Sediment (p. 149)
  • 3.4.1 Shields Diagram (p. 149)
  • 3.4.2 Settling and Equilibrium Concentration (p. 152)
  • 3.4.3 Bed Load Transport (p. 155)
  • 3.5 Sediment Bed (p. 156)
  • 3.5.1 Characteristics of Sediment Bed (p. 157)
  • 3.5.2 A Model for Sediment Bed (p. 159)
  • 3.6 Wind Waves (p. 162)
  • 3.6.1 Wave Processes (p. 163)
  • 3.6.2 Wind Wave Characteristics (p. 168)
  • 3.6.3 Wind Wave Models (p. 170)
  • 3.6.4 Combined Flows of Wind Waves and Currents (p. 172)
  • 3.6.5 Case Study: Wind Wave Modeling in Lake Okeechobee (p. 174)
  • 3.7 Sediment Transport Modeling (p. 179)
  • 3.7.1 Sediment Parameters and Data Requirements (p. 180)
  • 3.7.2 Case Study I: Lake Okeechobee (p. 182)
  • 3.7.3 Case Study II: Blackstone River (p. 191)
  • 4 Pathogens and Toxics (p. 201)
  • 4.1 Overview (p. 201)
  • 4.2 Pathogens (p. 203)
  • 4.2.1 Bacteria, Viruses, and Protozoa (p. 204)
  • 4.2.2 Pathogen Indicators (p. 206)
  • 4.2.3 Processes Affecting Pathogens (p. 208)
  • 4.3 Toxic Substances (p. 210)
  • 4.3.1 Toxic Organic Chemicals (p. 213)
  • 4.3.2 Metals (p. 214)
  • 4.3.3 Sorption and Desorption (p. 216)
  • 4.4 Fate and Transport Processes (p. 220)
  • 4.4.1 Mathematical Formulations (p. 220)
  • 4.4.2 Processes Affecting Fate and Decay (p. 223)
  • 4.5 Contaminant Modeling (p. 229)
  • 4.5.1 Case Study I: St. Lucie Estuary and Indian River Lagoon (p. 230)
  • 4.5.2 Case Study II: Rockford Lake (p. 239)
  • 5 Water Quality and Eutrophication (p. 247)
  • 5.1 Overview (p. 248)
  • 5.1.1 Eutrophication (p. 248)
  • 5.1.2 Algae (p. 250)
  • 5.1.3 Nutrients (p. 253)
  • 5.1.4 Dissolved Oxygen (p. 261)
  • 5.1.5 Governing Equations for Water Quality Processes (p. 262)
  • 5.2 Algae (p. 274)
  • 5.2.1 Algal Biomass and Chlorophyll (p. 275)
  • 5.2.2 Equations for Algal Processes (p. 277)
  • 5.2.3 Algal Growth (p. 279)
  • 5.2.4 Algal Reduction (p. 285)
  • 5.2.5 Silica and Diatom (p. 289)
  • 5.2.6 Periphyton (p. 292)
  • 5.3 Organic Carbon (p. 294)
  • 5.3.1 Decomposition of Organic Carbon (p. 296)
  • 5.3.2 Equations for Organic Carbon (p. 296)
  • 5.3.3 Heterotrophic Respiration and Dissolution (p. 298)
  • 5.4 Phosphorus (p. 299)
  • 5.4.1 Equations for Phosphorus State Variables (p. 302)
  • 5.4.2 Phosphorus Processes (p. 305)
  • 5.5 Nitrogen (p. 308)
  • 5.5.1 Forms of Nitrogen (p. 309)
  • 5.5.2 Equations for Nitrogen State Variables (p. 311)
  • 5.5.3 Nitrogen Processes (p. 317)
  • 5.6 Dissolved Oxygen (p. 322)
  • 5.6.1 Biochemical Oxygen Demand (p. 325)
  • 5.6.2 Processes and Equations of Dissolved Oxygen (p. 328)
  • 5.6.3 Effects of Photosynthesis and Respiration (p. 331)
  • 5.6.4 Reaeration (p. 332)
  • 5.6.5 Chemical Oxygen Demand (p. 336)
  • 5.7 Sediment Fluxes (p. 336)
  • 5.7.1 Sediment Diagenesis Model (p. 338)
  • 5.7.2 Depositional Fluxes (p. 344)
  • 5.7.3 Diagenesis Fluxes (p. 347)
  • 5.7.4 Sediment Fluxes (p. 348)
  • 5.7.5 Silica (p. 365)
  • 5.7.6 Coupling with Sediment Resuspension (p. 366)
  • 5.8 Submerged Aquatic Vegetation (p. 368)
  • 5.8.1 Introduction (p. 369)
  • 5.8.2 Equations for a SAV Model (p. 371)
  • 5.8.3 Coupling with the Water Quality Model (p. 378)
  • 5.9 Water Quality Modeling (p. 385)
  • 5.9.1 Model Parameters and Data Requirements (p. 387)
  • 5.9.2 Case Study I: Lake Okeechobee (p. 390)
  • 5.9.3 Case Study II: St. Lucie Estuary and Indian River Lagoon (p. 406)
  • 6 External Sources and TMDL (p. 417)
  • 6.1 Point Sources and Nonpoint Sources (p. 417)
  • 6.2 Atmospheric Deposition (p. 420)
  • 6.3 Wetlands and Groundwater (p. 424)
  • 6.3.1 Wetlands (p. 424)
  • 6.3.2 Groundwater (p. 427)
  • 6.4 Watershed Processes and TMDL Development (p. 430)
  • 6.4.1 Watershed Processes (p. 430)
  • 6.4.2 Total Maximum Daily Load (TMDL) (p. 433)
  • 7 Mathematical Modeling and Statistical Analyses (p. 437)
  • 7.1 Mathematical Models (p. 437)
  • 7.1.1 Numerical Models (p. 440)
  • 7.1.2 Model Selection (p. 444)
  • 7.1.3 Spatial Resolution and Temporal Resolution (p. 447)
  • 7.2 Statistical Analyses (p. 449)
  • 7.2.1 Statistics for Model Performance Evaluation (p. 450)
  • 7.2.2 Correlation and Regression (p. 452)
  • 7.2.3 Spectral Analysis (p. 454)
  • 7.2.4 Empirical Orthogonal Function (EOF) (p. 457)
  • 7.2.5 EOF Case Study (p. 460)
  • 7.3 Model Calibration and Verification (p. 466)
  • 7.3.1 Model Calibration (p. 467)
  • 7.3.2 Model Verification and Validation (p. 470)
  • 7.3.3 Sensitivity Analysis (p. 471)
  • 8 Rivers (p. 473)
  • 8.1 Characteristics of Rivers (p. 473)
  • 8.2 Hydrodynamic Processes in Rivers (p. 477)
  • 8.2.1 River Flow and the Manning Equation (p. 477)
  • 8.2.2 Advection and Dispersion in Rivers (p. 481)
  • 8.2.3 Flow over Dams (p. 482)
  • 8.3 Sediment and Water Quality Processes in Rivers (p. 485)
  • 8.3.1 Sediment and Contaminants in Rivers (p. 485)
  • 8.3.2 Impacts of River Flow on Water Quality (p. 486)
  • 8.3.3 Eutrophication and Periphyton in Rivers (p. 488)
  • 8.3.4 Dissolved Oxygen in Rivers (p. 489)
  • 8.4 River Modeling (p. 492)
  • 8.4.1 Case Study I: Blackstone River (p. 493)
  • 8.4.2 Case Study II: Susquehanna River (p. 503)
  • 9 Lakes and Reservoirs (p. 509)
  • 9.1 Characteristics of Lakes and Reservoirs (p. 509)
  • 9.1.1 Key Factors Controlling a Lake (p. 510)
  • 9.1.2 Vertical Stratification (p. 511)
  • 9.1.3 Biological Zones in Lakes (p. 514)
  • 9.1.4 Characteristics of Reservoirs (p. 515)
  • 9.1.5 Lake Pollution and Eutrophication (p. 519)
  • 9.2 Hydrodynamic Processes (p. 521)
  • 9.2.1 Inflow, Outflow, and Water Budget (p. 522)
  • 9.2.2 Wind Forcing and Vertical Circulations (p. 525)
  • 9.2.3 Seasonal Variations of Stratification (p. 527)
  • 9.2.4 Gyres (p. 530)
  • 9.2.5 Seiches (p. 532)
  • 9.3 Sediment and Water Quality Processes in Lakes (p. 538)
  • 9.3.1 Sediment Deposition in Reservoirs and Lakes (p. 538)
  • 9.3.2 Algae and Nutrient Stratifications (p. 540)
  • 9.3.3 Dissolved Oxygen Stratifications (p. 543)
  • 9.3.4 Internal Cycling and Limiting Functions in Shallow Lakes (p. 546)
  • 9.4 Lake Modeling (p. 550)
  • 9.4.1 Case Study I: Lake Tenkiller (p. 551)
  • 9.4.2 Case Study II: Lake Okeechobee (p. 560)
  • 10 Estuaries and Coastal Waters (p. 567)
  • 10.1 Introduction (p. 567)
  • 10.2 Tidal Processes (p. 572)
  • 10.2.1 Tides (p. 572)
  • 10.2.2 Tidal Currents (p. 576)
  • 10.2.3 Harmonic Analysis (p. 580)
  • 10.3 Hydrodynamic Processes in Estuaries (p. 584)
  • 10.3.1 Salinity (p. 585)
  • 10.3.2 Estuarine Circulation (p. 586)
  • 10.3.3 Stratifications of Estuaries (p. 588)
  • 10.3.4 Flushing Time (p. 593)
  • 10.4 Sediment and Water Quality Processes in Estuaries (p. 600)
  • 10.4.1 Sediment Transport under Tidal Forcing (p. 600)
  • 10.4.2 Flocculation of Cohesive Sediment and Sediment Trapping (p. 601)
  • 10.4.3 Eutrophication in Estuaries (p. 604)
  • 10.5 Estuarine and Coastal Modeling (p. 607)
  • 10.5.1 Open Boundary Conditions (p. 609)
  • 10.5.2 Case Study I: Morro Bay (p. 613)
  • 10.5.3 Case Study II: St. Lucie Estuary and Indian River Lagoon (p. 626)
  • Appendix A Environmental Fluid Dynamics Code (p. 635)
  • A1 Overview (p. 635)
  • A2 Hydrodynamics (p. 636)
  • A3 Sediment Transport (p. 637)
  • A4 Toxic Chemical Transport and Fate (p. 637)
  • A5 Water Quality and Eutrophication (p. 637)
  • A6 Numerical Schemes (p. 638)
  • A7 Documentation and Application Aids (p. 639)
  • Appendix B Conversion Factors (p. 641)
  • Appendix C Contents of Electronic Files (p. 645)
  • C1 Channel Model (p. 646)
  • C2 St. Lucie Estuary and Indian River Lagoon Model (p. 646)
  • C3 Lake Okeechobee Environmental Model (p. 646)
  • C4 Documentation and Utility Programs (p. 647)
  • Bibliography (p. 649)
  • Index (p. 671)

Author notes provided by Syndetics

Zhen-Gang (Jeff) Ji, PhD, DES, PE, is an oceanographer and numerical modeler with the Minerals Management Service

There are no comments for this item.

Log in to your account to post a comment.