Item type | Current location | Call number | Status | Date due | Barcode | Item holds | Course reserves |
---|---|---|---|---|---|---|---|

Monografia | Biblioteca Geral da Universidade do Minho | BGUM 548 - H | Available | 201311 | |||

Monografia | Biblioteca Geral da Universidade do Minho | BGUM 548 - H | Available | 201312 | |||

Monografia | Biblioteca Geral da Universidade do Minho | BGUMD 111077 | Available | 201313 | |||

Monografia | Biblioteca Geral da Universidade do Minho | BGUM 548 - H | Não requisitável | Not for loan | 208074 |
Mestrado Integrado em Engenharia de Materiais Física dos Materiais 2º semestre |

Total holds: 0

A knowledge of crystallography opens the door to a clearer understanding of topics in physics, chemistry, and other disciplines. In this new text, basic ideas in crystallography and diffraction are explained simply and comprehensively. The physical concepts and geometrical features common to

diffraction modes are emphasized by simple analogies and demonstrations, with special attention paid to two-dimensional patterns and symmetry. The book, written by an experienced teacher, is an ideal introduction for students.

**X-ray photograph of zinc blende (Friedrich, Knipping and von Laue, 1912)**(p. xiv)**X-ray photograph of deoxyribonucleic acid (Franklin and Gosling, 1952)**(p. xv)**1 Crystals and crystal structures**(p. 1)**1.1 The nature of the crystalline state**(p. 1)**1.2 Constructing crystals from close-packed hexagonal layers of atoms**(p. 5)**1.3 Unit cells of the hcp and ccp structures**(p. 6)**1.4 Constructing crystals from square layers of atoms**(p. 9)**1.5 Constructing body-centred cubic crystals**(p. 9)**1.6 Interstitial structures**(p. 10)**1.7 Some simple ionic and covalent structures**(p. 18)**1.8 Representing crystals in projection: crystal plans**(p. 18)**1.9 Stacking faults and twins**(p. 20)**1.10 Introduction to some more complex crystal structures**(p. 26)**1.10.1 Tetrahedral and octahedral structures--silicon carbide and alumina**(p. 26)**1.10.2 Silicate structures**(p. 28)**1.10.3 The structures of carbon**(p. 33)**Exercises**(p. 40)**2 Two-dimensional patterns, lattices and symmetry**(p. 41)**2.1 Approaches to the study of crystal structures**(p. 41)**2.2 Two-dimensional patterns and lattices**(p. 42)**2.3 Two-dimensional symmetry elements**(p. 44)**2.4 The five plane lattices**(p. 47)**2.5 The seventeen plane groups**(p. 50)**2.6 One-dimensional symmetry: border or frieze patterns**(p. 55)**2.7 Symmetry in art and design: counterchange patterns**(p. 55)**2.8 Non-periodic patterns and tilings**(p. 59)**Exercises**(p. 63)**3 Bravais lattices and crystal systems**(p. 67)**3.1 Introduction**(p. 67)**3.2 The fourteen space (Bravais) lattices**(p. 67)**3.3 The symmetry of the fourteen Bravais lattices: crystal systems**(p. 71)**3.4 The coordination or environments of Bravais lattice points: space-filling polyhedra**(p. 74)**Exercises**(p. 77)**4 Crystal symmetry: point groups, space groups, symmetry-related properties and quasiperiodic crystals**(p. 79)**4.1 Symmetry and crystal habit**(p. 79)**4.2 The thirty-two crystal classes**(p. 80)**4.3 Centres and inversion axes of symmetry**(p. 81)**4.4 Crystal symmetry and properties**(p. 85)**4.5 Translational symmetry elements**(p. 89)**4.6 Space groups**(p. 92)**4.7 Bravais lattices, space groups and crystal structures**(p. 95)**4.8 Quasiperiodic crystals or crystalloids**(p. 100)**Exercises**(p. 103)**5 Describing lattice planes and directions in crystals: Miller indices and zone axis symbols**(p. 104)**5.1 Introduction**(p. 104)**5.2 Indexing lattice directions--zone axis symbols**(p. 105)**5.3 Indexing lattice planes--Miller indices**(p. 106)**5.4 Miller indices and zone axis symbols in cubic crystals**(p. 109)**5.5 Lattice plane spacings, Miller indices and Laue indices**(p. 110)**5.6 Zones, zone axes and the zone law, the addition rule**(p. 112)**5.6.1 The Weiss zone law or zone equation**(p. 112)**5.6.2 Zone axis at the intersection of two planes**(p. 112)**5.6.3 Plane parallel to two directions**(p. 112)**5.6.4 The addition rule**(p. 113)**5.7 Indexing in the trigonal and hexagonal systems: Weber symbols and Miller-Bravais indices**(p. 113)**5.8 Transforming Miller indices and zone axis symbols**(p. 115)**5.9 Transformation matrices for trigonal crystals with rhombohedral lattices**(p. 118)**5.10 A simple method for inverting a 3 x 3 matrix**(p. 119)**Exercises**(p. 120)**6 The reciprocal lattice**(p. 122)**6.1 Introduction**(p. 122)**6.2 Reciprocal lattice vectors**(p. 122)**6.3 Reciprocal lattice unit cells**(p. 125)**6.4 Reciprocal lattice cells for cubic crystals**(p. 128)**6.5 Proofs of some geometrical relationships using reciprocal lattice vectors**(p. 130)**6.5.1 Relationships between a, b, c and a*, b*, c***(p. 130)**6.5.2 The addition rule**(p. 130)**6.5.3 The Weiss zone law or zone equation**(p. 131)**6.5.4 d-spacing of lattice planes (hkl)**(p. 132)**6.5.5 Angle [rho] between plane normals (h[subscript 1]k[subscript 1]l[subscript 1] and (h[subscript 2]k[subscript 2]l[subscript 2])**(p. 132)**6.5.6 Definition of a*, b*, c*, in terms of a, b, c**(p. 132)**6.5.7 Zone axis at intersection of planes (h[subscript 1]k[subscript 1]l[subscript 1]) and (h[subscript 2]k[subscript 2]l[subscript 2])**(p. 133)**6.5.8 A plane containing two directions [u[subscript 1]v[subscript 1]w[subscript 1] and [u[subscript 2]v[subscript 2]w[subscript 2]**(p. 133)**Exercises**(p. 133)**7 The diffraction of light**(p. 134)**7.1 Introduction**(p. 134)**7.2 Simple observations of the diffraction of light**(p. 136)**7.3 The nature of light: coherence, scattering and interference**(p. 140)**7.4 Analysis of the geometry of diffraction patterns from gratings and nets**(p. 143)**7.5 The resolving power of optical instruments, the telescope, camera, microscope and the eye**(p. 150)**Exercises**(p. 159)**8 X-ray diffraction: the contributions of Max von Laue, W. H. and W. L. Bragg and P. P. Ewald**(p. 160)**8.1 Introduction**(p. 160)**8.2 Laue's analysis of X-ray diffraction: the three Laue equations**(p. 161)**8.3 Bragg's analysis of X-ray diffraction: Bragg's law**(p. 163)**8.4 Ewald's synthesis: the reflecting sphere construction**(p. 166)**Exercises**(p. 169)**9 The diffraction of X-rays**(p. 170)**9.1 Introduction**(p. 170)**9.2 The intensities of X-ray diffracted beams: the structure factor equation and its applications**(p. 174)**9.3 The broadening of diffracted beams: reciprocal lattice points and nodes**(p. 180)**9.4 Fixed [theta], varying [lambda] X-ray techniques: the Laue method**(p. 183)**9.5 Fixed [lambda], varying [theta] X-ray techniques: oscillation, rotation and precession methods**(p. 185)**9.5.1 The oscillation method**(p. 185)**9.5.2 The rotation method**(p. 188)**9.5.3 The precession method**(p. 188)**9.6 X-ray diffraction from single crystal thin films and multilayers**(p. 192)**9.7 X-ray (and neutron) diffraction from ordered crystals**(p. 196)**Exercises**(p. 199)**10 X-ray diffraction of polycrystalline materials**(p. 200)**10.1 Introduction**(p. 200)**10.2 The geometrical basis of polycrystalline (powder) X-ray diffraction techniques**(p. 201)**10.3 Some applications of X-ray techniques in polycrystalline materials**(p. 210)**10.3.1 Accurate lattice parameter measurements**(p. 210)**10.3.2 Identification of unknown phases**(p. 211)**10.3.3 Measurement of crystal (grain) size**(p. 213)**10.3.4 Measurement of internal elastic strains**(p. 214)**10.4 Preferred orientation (texture, fabric) and its measurement**(p. 214)**10.4.1 Fibre textures**(p. 215)**10.4.2 Sheet textures**(p. 216)**10.5 X-ray diffraction pattern of DNA: simulation by light diffraction**(p. 219)**Exercises**(p. 225)**11 Electron diffraction and its applications**(p. 228)**11.1 Introduction**(p. 228)**11.2 The Ewald reflecting sphere construction for electron diffraction**(p. 229)**11.3 The analysis of electron diffraction patterns**(p. 231)**11.4 Applications of electron diffraction**(p. 234)**11.4.1 Determining orientation relationships between crystals**(p. 234)**11.4.2 Identification of polycrystalline materials**(p. 236)**11.4.3 Identification of quasiperiodic crystals**(p. 237)**Exercises**(p. 238)**12 The stereographic projection and its uses**(p. 242)**12.1 Introduction**(p. 242)**12.2 Construction of the stereographic projection of a cubic crystal**(p. 246)**12.3 Manipulation of the stereographic projection: use of the Wulff net**(p. 249)**12.4 Stereographic projections of non-cubic crystals**(p. 251)**12.5 Applications of the stereographic projection**(p. 254)**12.5.1 Representation of point group symmetry**(p. 254)**12.5.2 Representation of orientation relationships**(p. 255)**12.5.3 Representation of preferred orientation (texture or fabric)**(p. 257)**Exercises**(p. 260)**Appendix 1 Useful components for crystallography model-building and suppliers**(p. 261)**Appendix 2 Computer programs in crystallography**(p. 263)**Appendix 3 Biographical notes on crystallographers and scientists mentioned in the text**(p. 267)**Appendix 4 Some useful crystallographic relationships**(p. 287)**Appendix 5 A simple introduction to vectors and complex numbers and their use in crystallography**(p. 290)**Appendix 6 Systematic absences (extinctions) in X-ray diffraction and double diffraction in electron diffraction patterns**(p. 297)**Answers to Exercises**(p. 306)**Further reading**(p. 317)**Index**(p. 324)

There are no comments for this item.